

circuit shown in Fig. P4-1
(a) Derive the Boolean
expressions for T₁ through T₄.
Evaluate the outputs F₁ and
F₂ as a function of the four
inputs.
(b) List the truth table with 16
binary combinations of the
four input variables. Then list

4-1 Consider the combinational

 T_1 T_3 F_4 F_6 F_1 F_1 F_2 F_2 F_2 F_1 F_2 F_2 F_2 F_1 F_2 F_2

) List the truth table with 16 binary combinations of the four input variables. Then list the binary values for T_1 through T_4 and outputs F_1 and F_2 in the table.

T2=A'B $T_3 = A + B'C$ $T_4 = (A'B) \oplus D = A'BD' + AD + B'D$ $F_1 = A + B'C + A'BD' + AD + B'D = A + B'C + BD' + B'D$

4-7 Design a combinational circuit that converts a 4-bit Gray code (Table 1-6) to a 4-bit binary number. Implement the circuit with exclusive-OR gates.

F= A'B+D

T1=B'C

11 10 ABCD WXY3 0000 0000 000 0001 0011 0010 0010 0011 DIID 0100 $\gamma = AB' + A'B = A \oplus B$ 0101 (u) =0110 0101 0111 0100 1100 1000 111 1101 1001 111 1010 1111 011 1110 1100 Y = A'B' +ARC + ABC + ABC 1010 1101 1011 = A'(BOC) + A(BOC) 1110 1001 = ABBADC 1000 1111 = xOC

- 4-12 (a) Design a half-subtractor circuit with inputs x and y and outputs D and B. The circuit subtracts the bits x y and places the difference in D and the borrow in B.
 - (b) Design a full-subtractor circuit with three inputs x, y, z and two outputs D and B. The circuit subtracts x - y - z, where z is the input borrow, B is the output borrow, and D is the difference.

4-28 A combinational circuit is defined by the following three Boolean functions:

- F1 = x'y'z' + xz
- F2 = xy'z' + x'yF3 = x'y'z + xy

```
F3 = xyz + xy
```

Design the circuit with a decoder and external gates.

4-33 Implement a full adder with two 4x1 multiplexers.

