Homework \#4

4-1 Consider the combinational circuit shown in Fig. P4-1
(a) Derive the Boolean
expressions for T_{1} through T_{4} Evaluate the outputs F_{1} and
F_{2} as a function of the four inputs.
(b) List the truth table with 16 binary combinations of the four input variables. Then list the binary values for T_{1}
through T_{4} and outputs F_{1} and F_{2} in the table.

T1=B'C
T2=A'B

Fig. P4-1
$T_{3}=A+B^{\prime} C$
$T_{4}=\left(A^{\prime} B\right) \oplus D=A^{\prime} B D^{\prime}+A D+B^{\prime} D$
$F_{1}=A+B^{\prime} C+A^{\prime} B D^{\prime}+A D+B^{\prime} D=A+B^{\prime} C+B D^{\prime}+B^{\prime} D$
$F_{2}=A^{\prime} B+D$

4-12 (a) Design a half-subtractor circuit with inputs x and y and outputs D and B . The circuit subtracts the bits $\mathrm{x}-\mathrm{y}$ and places the difference in D and the borrow in B .
(b) Design a full-subtractor circuit with three inputs $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and two outputs D and B . The circuit subtracts $\mathrm{x}-\mathrm{y}-\mathrm{z}$, where z is the input borrow, B is the output borrow, and D is the difference.

(b)

x	y	z	B	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$D=x \oplus y \oplus z$
$B=x^{\prime} y+x^{\prime} z+y z$

11100

4-28 A combinational circuit is defined by the following three Boolean functions

$$
\begin{aligned}
& \text { F1 }=x^{\prime} y^{\prime} z^{\prime}+x z \\
& \text { F2 }=x y^{\prime} z^{\prime}+x^{\prime} y \\
& \text { F3 }=x^{\prime} y^{\prime} z+x y
\end{aligned}
$$

Design the circuit with a decoder and external gates.

$$
\begin{aligned}
& F_{1}=x\left(y+y^{\prime}\right) z+x^{\prime} y^{\prime} z^{\prime}=\Sigma(0,5,7) \\
& F_{2}=x y^{\prime} z^{\prime}+x^{\prime} y\left(z^{\prime} z^{\prime}\right)=\Sigma(2,3,4) \\
& F_{3}=x^{\prime} y^{\prime} z+x y\left(z+z^{\prime}\right)=\Sigma(1,6,7)
\end{aligned} \quad x-z^{2} \quad 3 \times 8 \text { decoder } 3
$$

4-33 Implement a full adder with two 4 x 1 multiplexers.

